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In this appendix, I sign the comparative statics—such as whether fundraising increases in incumbent
strength—for the incumbent holding challenger quality constant, i.e. when challenger entry is not strategic.
I then give a detailed proof for the perfect-information, no-uncertainty equilibrium presented in the main
text.

A Proof of Comparative Statics

In this section, I present the solution to the incumbent’s maximization problem holding (probability of)
challenger quality constant. The method is to work backwards through each decision point of the incumbent
solving each maximization problem with the Kuhn-Tucker method. I then show how war chests and other
variables change with incumbent strength through the implicit funciton theorem.

Because W1 (s, I) > 0,! the incumbent will spend all that he has in the last election: sy = r1—s1+72 (recall
that subscripts denote the first or second election). Since the probabilities of drawing a high quality challenger
are held constant here (that is, they are known by the incumbent), the incumbent’s utility maximization
problem is a nested maximization problem:

max —C'(r1)
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I solve the inner maximization problems and work outwards (to the overall maximization problem).

A.1 Solving for money raised in the second election

First solve: ' ' 4 ‘ '

max |~C(rg) + W (1 = 5] + 75, 1)+ (1 = o)W (ry = s + 74, D)

r3>0
(The method is the same whether a low or high quality challenger ran in the first election, i.e., j = L or
H.) For this problem, 71 — s} (the war chest) is a constant. Using the method of Kuhn-Tucker to solve this
problem, I first set up the Lagrangian:

L(r3, ) = =C(r3) + mWH (11 — 5] + 13, 1) + (1= )W (ry — 8§ + 73, 1) + Ar.

IFollowing convention, a subscript n on a function denotes the partial derivative of that function with respect to the nth
oW (s, q)

argument of the function. Thus, Wi (s,q) = 3
s



The first-order conditions are

0L

57~ —C1(r}) +ny Wi (ry — 1+ 7], D) + (1 — )W (ry — 8] + 73, 1) + A =0
2

A >0, T%ZO, )\7’%:0.
There are two cases: 1-{A > 0, r} = 0}and 2-{\ = 0, r} > 0}. I examine the cases separately.
A.1.1 Case 1:
Here 7‘% = 0. Therefore,
Wi (r1 = 51, 1) + (1= )W (r1 — 51, 1) < C1(0).
Since C1(0) = 0 and W/ (-,-) > 0 by assumption, this cannot be true.
A.1.2 Case 2:
Here A = 0. For a given war chest (r; — s7), find the 5 > 0 that solves
Wit (r1 = 8]+ 7%, 1) + (L= )W (r1 = 8] + 13, 1) = Cu(r3). (1)

For future use I derive some comparative statics. Substituting the r3* that solves Equation (1), T obtain

Wt (ry = 81+ 13", 1) + (L =) Wi (r1 = s + 13", 1) = C1(r5"). (2)

Partially differentiating both sides with respect to s{, I obtain

, . 4 y orl* ol
{n2W{{(r1 — 81+ 735 1)+ (1= n)Wii(r1 — s + 73 71)} {—1+ > } = Cu(ry’) >

Os1 Os1
. " 87'%* . . G
Since WY, (-,+) < 0 and C11(+) > 0, I find that 0 < - <1 Looking further ahead, I substitute the

, 51
that solves Equation (1) with the equilibrium s}":

Wi (r1 = 51" 137, 1) + (L= )W (11 — 81" + 73", 1) = Cu(r§"). 3)

Differentiating both sides with respect to r1, I obtain

Wil (ry — s{* + ré*, I+ ds{* dré* B dr%*
L j % j % 17—4’— :Cll(TQ )—
(1= no)Wh(r — s+ 73", 1) dry dry dr

Since WH(', ) < 0 and 011(') > 0,1 find

drg* ds?* drd*

250 & L >14+-2>1

d’l“l d?“l + d’l“l

drd’ dsi*

—2 0 & L =1 4
d’l“l d?“l . ( )
drd’ ds’” drl*

—2 <0 & L <c1+-2<1.

d’l“l d?“l + d’l“l



A.2 Solving for the money spent in the first election

Now, solve the next maximization problem—finding s{:

max W](sl,f) [1—0(7‘%*)4—77214/ (rl—sl—l—r ,I)+(1—772)W (7‘1—31—1—7‘ 7I)}.

0<s9<ry

(The maximization problem is similar for sf and si?). In this problem, 7 is treated as a constant. Solve
again through the method of Kuhn-Tucker by first setting up the Lagrangian:

; ; 1= C(ry") +n,WH(ry — s] + 1], 1)
L(s’ — H(d T 2 1 )
(Slvﬂlalb) W (S ) { +(1 _ 772)1/{/L(r1 _ 51 + ’I“ ,I)

+ﬂ131 + po(r1 — 51)

The first-order conditions are

oL m@@in{]CX()+wwﬂvla+r,I)}

ds] 1—n)WE(ry — st +75", 1)
ord*
~Ca(ry") =2
o7
+Wi(s], "
(s1,1) +[772W1 (r1—51+r ,I) ] _1+8r§
+(1 —ny)WE (7“1—31—1—7“ ) ds’
thHy — Ho
= 0 ) )
,ulsl—O >0, sl >0
o(r1 — 1) =0, jig >0, 1 >sl.
Using Equation (2), substitute and simplify, and obtain
. _ H _
Wil n { O Fm e
(1 =)W (ry = 5] +13",1)
+W”@D){70ﬂgﬂ}
= py =0,

There are four cases: 1-{uy > 0,9 > 0}, 2-{py > 0,9 = 0}, 3-{pty = 0,y > 0}, 4-{p; = O,y = 0}. I
examine each of these in turn.

A.2.1 Case 1:

Since p; > 0 and py > 0, 71 = 5]1 = 0. This can only be true if r; = 0, in which case, this is the only possible
solution. If 1 > 0, this is not possible.

A.2.2 Case 2:

Here yi; > 0 and p, = 0. Thus, s] = 0. For this to be true,

L= C(ry") + W (ry + 73", 1)

Wf(o’”{ (1= ) WE(r £y 1)

bt =wio.n {eed}.



Since p; > 0,
1—C(r) )+772WH(7“1+T )

+(1 =) WE(ry + 13", 1) } <W0.) {C’l(r%*)} '

Rearranging,

WY (0.1) AU
Cy(r5") {LC(T%'*)MQWH(HH%*J) + (L= ma)WE(ry + 13 ’I)}.

(5)

To see that this is not possible, first define 7 as the r that solves Cy(r) = pW{ (r, )+ (1 —p)W{ (r, I).2 This
would be the ry chosen by the incumbent if no war chest were brought from the first election (r; = s1). This
T exists by the assumptions that W{(0,1) > C1(0) and there exists some 7 such that W7 (7, I ) > C(7)—

will be one of those 7. From the first max1mlzat10n problem solved (Equation (2)), ny Wil (r1 +73", 1) + (1 —
N )WE(ry + 13", I) = C1(#7), where 7" is the specific 3" that solves this equatlon From the restrictions
on the first and second derivatives of W7 (-,-) and C(-), I find that #%* < 7 < r1 4+ #* (remembering that 7,
must be positive, else this case is not possible). Since there exists some 7 such that WY (7, I) > C(7), there
also exists an f such that pW# (7, 1) + (1 — p)WL(r,I) > C(¥). This implies that oW (ry + 73" 1) + (1 —
no)WE(ry + 73", I) > C(r}*). Hence the denominator on the RHS of Equation (5) is greater than 1, while
the numerator on the RHS is less than 1. Thus the fraction on the RHS is less than 1. From the Inada-type
conditions on W7 (-, -), note that the LHS is greater than 1. Thus, the inequality cannot hold, and this case
is not possible.

A.2.3 Case 3:
In this case, p; = 0 and py > 0, which implies that 5]1 =7y, > 0. This yields the first order condition:

1= C(ry") + W (ry", 1)

Wf(rl,f){ (1 — ) WES 1)

b=witnn e} + e
Assuming that the solution is not at a corner, this can be made into an identity:

1—C(rg") +mW" (ry", 1)

Wy (m,I){ +(1 = o) WE(r)*, 1)

} = W (r1, 1) {cl(r;'*)} + o

Since s] =711, ds—l = 1, which implies (from Equation (4)) rs = 0. Differentiating both sides with respect
r r
to rq, ' . . 1
; 1—C@ry") +nyWH(ry" ) ; . du
Wiy (r1, 1 2 2 2 = W{(r1,1){Ci(r} —=. 6
b { PO D b = wienn (e )+ 2 ©

*

4 dus
From the assumptions on W7(-,-) and C(-), I find that —= . < 0. This means that if there is no war chest,
1

if one decreases r1, there will still be no war chest. Conversely, if one increases r1, there may be a war chest
(as one hits the corner where pj = 0, one moves into Case 4).

2Thus, rp, <7 < TH.



A.2.4 Case 4:
Here, 4 = 0 and p5, = 0. This implies that r; > s{ > (0. This yields the first-order condition:

i (s L=C(ry) +maWH(r = 51+ D)\ _ iy e
Wit n{ 1O i E D e widn {aed)- )

Since the term in braces on the LHS is greater than 1, and Wi(s], I) <1, Ci(r}*) > Wi(s], ). Substituting
in the solution value of s,

i (i L= Cg") +mWH(r = s+ 1) | _ yrri i jx
Wil n{ 1O e e e D b= win faed) 0

Differentiating both sides with respect to r1, and substituting in Equation (3) to simplify,

WJ ( VE ) { 1-— C(r%*) + 772W (7"1 — 81 —+ ’]" , ) } del*
HAsL +(1 =) WE(ry — 87"+, 1) | dry
o , ds?* o drl* 9)
= le (Sjl ,I)Cl(ré ) 2 dre — 1| +W? (SJI s )011( ) dry .
, drl” dsl* o _— dry’ :
From Equation (4), if > 0, then > 1. This yields a contradiction. Thus, < 0, which means
dr drq drq
_1* d J* _7*
that <1.If < 0, this yields another contradiction. Thus, 0 < <1.
dr1 d?"l 1

A.3 Solving for money raised in the first election

Now solve the grand maximization problem:
= C(r3"*) + 9, W (ry — 51 * )
H(L =)Wy — sy 47" 1)

. 1— CrE) 4+ nWH (ry — sl 40l 1)
+(1"1){WL(31L ’I){ +(1—7;722)W (7“1—51 ke T) ]}

max ~C(r) +m {W%{“,n [ !

T1 ZO

where 0 < s *<prpand 0 < s * < r1. Using the method of Kuhn-Tucker, set up the Lagrangian:

L(Tlvlj) = _C(rl)
WH Hx I 1_C(T§*>+772W (rl_sl +7' aI)
+m { (81 , ) { +(1(_L772))WL(7"1H_(51 +Lr ’IL) }})
1—-C(ry*) + n,WH (r1 — s *+r v
+(1 _T’l) {WL(Sl ) ) |: _|_2(1 _7;722)WL(T'1 _ 81 +T2* I) :|}

“+vry.



The first-order conditions are (again, substituting with Equation (3))

dL
= i)
1
Wi (sie 1y | L= O3 +mW (= sit 3™, 1) ] dsi™
+m S A= 77221WL(T1 — s 0 1) | dry
+WH(si, 1)Cy () {1 - d;; ]
1
WE(sk*, T) { L= C5) W (ry = sk 417 1) ] dsb*
+(1—m) S +(1—n2%W (ri—st" +ry" 1) | dr
W (s D)0 () [1 _ ]
dr1
+v
=0

vri =0, v>0, r >0.

There are two cases: 1-{v > O}and 2-{v = 0}.

A.3.1 Case 1:

Since v > 0, then r; = 0, and thus s¥* = sI* = 0 (and r&* = r1*). For this to be a maximum

=€)+ (W 0.0+ (=W} | 1O D ]
=Cop el f

_C(Tl) + {TIlWH(ThI) + (1 - nl)WL(rla I)} [ +(1 _ 772)WL(’I"§,I)

for all r; = si* = s*.3 Since the term in brackets is greater than 1, if 7; = ¢, the inequality will not hold

as a result of the Inada-type conditions on W7(-,-) and C(-). This also rules out the possibility of Case 1 in
the second maximization problem (in Section A.2).

A.3.2 Case 2:
This is the only possibility that allows r; > 0. Thus, i > 0.

A.4 Solution Maximum

I show that this problem satisfies the conditions of the Theorem of Kuhn and Tucker under Convexity
(Sundaram 1996, Theorem 7.16), and thus, that r7 is the maximum. Let

_ H( Hx L= C(rd™) + nyWH (ry — sf™ + 13>, 1)
gt = =Cr) ey {WGspen | FT TR )

_ L{.L* 1= C(ry*) +noaWH (ry — st* + 5%, 1)
w=m) w1 O

31t must also be greater for all r; > s{{*, etc., but the inequality stated will be sufficient to demonstrate the contradiction.



so that the incumbent maximizes g(r1). If [¢'(71) — ¢'(r1)](#1 — 1) < 0 for all 71,71 > 0, then g is concave.
Using the first derivative from the Lagrangian on rq,

g'(r1)= —Ci(r)

_ Hx* H _ JHx Hx dH*
WlH(s{{*,I)[l C(ry'™) +moWH (ry — s + 13 71)] 51

+(L=n)WEh(ry — sf* + i, 1) | dry
+1m dsH
AV e 1 - S|
1
WL<SL* I) 1- C(Té*) + UQWH(Tl - 81 + T%*a ) dsf*
P +(L = n)Wh(ry —sf* +r5*,1) | dry
+(1 —ny) dsL*
A D) [ 1- G
drl
dsit

If the first challenger is high quality, r; = s*, and thus

= 1. If the first challenger is low quality,
T1
r1 > st If 1y > sE* Equation (8) holds. If r; = si*, then the equation is simplified. Substituting these in,

we obtaln

g'(r1)= —Ci(r) R W v
. —C(ry'™*) + ry — s 4 pllx)
+771W1H(8{{ 51) |: 'i(l —7;722>WL(7'1 _ 81 _’_,],.2[*’[)
1 — C(rk*) + n,WH (ry — st 4 0l* 1) dsi=
)[ +(1 = no)Wh(ry — st + 5%, 1) } dry
dst*
B d']"l :|

Wi (st 1

+(1—m)

WL (s, 1Oy (rF) [1

We finally obtain

’ _ H( Hx* 1_C(T§*>+772WH(T1_81 +T§I*a1)
g (T1> - 01(7'1) +771W1 (81 51) |: +(1 _ 772>WL(7'1 _ SH* _’_,],.51*’[)
1— C(rk*) +772WH(7“1 — 51 kT
(1 - 7]1)W1 (31 » ) |: +(1 _ 772)W (7"1 . 81 +7“2L*7])

(10)

Let
. . . 1— C(PE*) + paWH (7 — 88 4 pH* 1)
/ _ H(aHx 2 2 1
g (Tl) = 01(7“1) +771W1 (81 71) [ +(1 7L772)W (Tlf; 51 +T‘A§I*,12
A 1 — C(P5) + nyWH 7y — 5% 4+ #L*T)
_ L (aLx 2 2 1 2 >
+(1 7]1>W1 (81 7I) |: +(1 _ 772)W (7.1 _ 81 _'_TQQL*,I)

Without loss of generality, let 71 > r1. (A) Since C11(r) > 0, —=C1 (1) < —=Ci(r1). (B) Since Wiy(s,I) <0

]* ]* .
and 6271 > 0, Wy (8°,1) < Wi(sI*,1). (C) Since Cy(r) > 0 and C;—Q <0, C(#") < C(r"). (D) Since
1 T1

d * * . A~ aJ A7 %k
Wi(s,I) > 0 and d_rl<r1 — s 4 r%) > 0 (see Equation 4), W(f, — 8 + /" 1) > W(ry — s + 3%, ).



(E) From (B), (C), and (

AH*
mWi( )[ (=) Wi = 4 74 1)
AL 1= C(y") + W (7"1—8*+72
(=)W (317, 1) (1= ) WE(fy — 5% 47k 1)
He 1) [ l—C’(rf*)—&—nQWH(rl—sH*—i—r * 1)
’ +(L = n)Wh(ry — sff* 4+ rf* 1)
1—O(r£*>+n2WH(r1—sl + 1y, 1)
+(1 = ny)WE(ry — sk* 4 rL* 1)

1—C () + n,WH (mé?*+f§*,1)J
2*71)

771W1
<
- ) WEsE ) [

From (A) and (E), we obtain ¢'(71) — ¢’(r1) < 0. Since 71 > 71, we have [¢'(F1) — ¢'(r1)](Ff1 —r1) < 0
for all 71,71 > 0. The constraint h(r;) = r1 > 0 is concave, and has a point h(T1) > 0 (specifically, any
r1 > 0), thus fulfilling Slater’s condition. Since the other Kuhn-Tucker first-order conditions hold, r§ is the
maximum.[]

A.5 The possibility of a war chest

Now I am left to show when a war chest may exist, i.e., when 7 > s&* and/or r; > sf*. To show this,
first solve for 7y if the incumbent knew for certain that he would face a low quality challenger in the first
election. Call this 7¥. T now have the maximization problem:

[ 1—C(rL*) + m,WH(rf — sk 4 r2* 1)
Ligl* 1 2 2 1 1 2 )
RO WIS D T W s e )

Through the Kuhn-Tucker method, obtain the Lagrangian:

L L Lote | 1= COg*) +nWH(rf — st 43, 1) L.L
L(ry,v™) = C(Tl)+W (s1%,1) i _~_(1_772)WL(7,1L_81L*+T,%*7I) +urUry.

The first-order conditions are

dL

— L
T —Ci(ry)
1—C(rE*) +n,WH(rE — st 4 rk* 1) ] dst*
L(Lx T 2 2 1 1
+Wi(s7%,1) [ +(1 —772)WL(7" L* —1—7“ ,I) dr{‘
d Lx
s D) [L- 2] (1)
1
+vt
= 0
virl =0, vE >0, >0
As before, I can rule out 7 = 0, which implies v = 0. If (as in Case 3 of Section A.2 above) rf = s
Lx
then 7 1L =1, and Equation (11) reduces to
i
_ Lx* H(,.L _ .Lx Lx*
CL(ry = WE(sh, 1) 1= C(ry™) + W2 (ry — sy™ + 13", I) (12)

HA =) WE(rf = st 413, 1)



This makes sense in that the marginal cost in this election must be equal to the marginal benefit of winning
this election plus the expected utility of the next election. And if (as in Case 4 of Section A.2 above)
rt > sb* then (from Equation (7)):

1= C(ry*) + nuaWH (rf — st* 4 v, 1)

H(L—m)WE(rE — st +rle 1) | T WHEr D). (13)

Wi (s1™, 1)
Substituting Equation (13) into Equation (11), T obtain Equation (12) again. If rf > si* substitute
Equation (12) into Equation (13) to get

Ci(ri) = WE(st*, )Ci(ry”). (14)

Since WE(si*, I) < 1, this requires that Cy(r{*) > C;(r¥), and thus, rZ* > rf (if 7"1 > sb).
Going through the same process to find 1 and its accompanying conditions, if 7 > s* then

Ci(ri) = WH (s, 1)C1(r3™)

and 73* > 7 Since by assumption, r;, > 7y (the monies raised and spent if there were only one election
and the incumbent knew the quality of his challenger was low or high, respectively), then the result (from
Equation (7)) that Cy(r{*) > Wi (sk*, I) yields sf* > r1*. But this means that si* > rf* > rL and since
st* <7l this yields a contradiction. Therefore, ri = s{‘*. an incumbent would never have a war chest if

he knew that he was facing a high quality challenger in this election.

Now I show that rff < rf. There are two cases: 1-{rff = sf*}land 2-{rff > sI*} (knowing that
L _ Lx
Y = s7).

A.5.1 Case 1:

I wish to show that ¥ < £ when 71 = sf*. Suppose not. Then rf > r£, which implies that C;(rff) >

C1(r¥). Substituting in the reduced first- order conditions from Equation (12),

W1 (7”1 ) )[1_0(7”2)"‘772WH(7"27 )+(1_772)WL(7"§J)] >
Wi (rf, )[1*C(T2)+U2W (r3,1) + (1*772)WL(T§:I)]

where 75 = 7 of Section A.2.2. Canceling out:
Wl (’rl ) ) > W%(rfvl)

This yields a contradiction to the assumption that r, > ry.* Thus, rif < rf (if there is no war chest).

A.5.2 Case 2:

I wish to show that rff < rf when rff > sf*. Since r{ = sI*, the incumbent brings no war chest with

him into the second election cycle (if he draws a low quality challenger in the first election), and r&* = 7.
From Equation (12), C; (rl) > Wit (rl ,I). This implies that r¥ > ry, > 7. Since 71 > sfI* rlI* <7 From
Equation (14), 7i* > and thus r# < 7. Therefore r < rf.

Since n € (0,1), by the concavity of the overall utility function, one obtains rff < r} < v . Now I
examine when to expect a war chebt If the incumbent knew he was running against a low quality challenger,
he would raise 7¥ (and spend s¥* = rf). From the point of view of the model, he is in Case 3, and thus,
dpis

1

Hx

Lo (from Equation (6)), as one decreases r from 71 to 5, uj increases, and thus, there

40r, more specifically, this yields a contradition to the shapes that WZ(-) and W# (-) must take to maintain the assumption
that rp, > rg.



is no war chest if an incumbent found out he was running against a low quality challenger after he raised the
money. If the incumbent knew he was running against a high quality challenger, he would raise 7. He may

save some or none of it in this case. If he had no war chest in this case, sinc

1
from 7 to ¥, u} decreases—perhaps reaching 0, in which case there would be a war chest. If the incumbent
Hx

had a war chest at 7, then since < 1 (from Equation (9)), as one increased r; from rf to rj, the

1
incumbent would keep a larger and larger war chest.[]

A.6 Relationship between incumbent strength and money

I utilize an application of the implicit function theorem for simultaneous equations (Chiang 1984, 210-212).
The equations used are the first order conditions derived above: Equations 2 (twice: once for each challenger
quality), 8 (twice: once for each challenger quality), and 10 (substituting in r; = r} to form the identity and
setting it equal to 0). Dropping the * for simplicity:

Fro =Ci(rdh) + Wi (= st + ', 1) + (1= )W (r — s + 737, 1) =0
2 —01(r§)+n2W1H(m—sf+r§,1)+<1—n2)W1L(m—sf+r%,I) =0
F3 . W (s, T) 170(T%11)j,;722)mm//HE:1:: i:zq:? }—WH s, D {Ci(rfH} =0
Wik 1‘051"53_*,;723%2:2 i,’i;; j WisED{G0h) =0
1-— 7" —s rot 1
IR s )

0<r2>+n2WH<m — skl ] =0

l
_ L(.L
+(1 =)Wy (sy, 1) [ (1= o) WE(ry — sb 4+ L 1)

Assuming continuous partial derivatives and a nonzero Jacobian determinant, through the implict function
theorem, we derive the following system:

ror' or' 9Fr' QF' Q9F'7 g, L
ory 85{{ 85@ ar,f aré Fl _OF
OF%2 9F% 9F 9F2  9F ds! 68F12
or1  asT  asL  arl  orlL ol -

1 1 2 2, L ol
AF3  9F®  OF AF3  OF st | _ 9F3
or1 85{{ 851 ar,f 6r2 8% - | 8[4
oF* 8F4 8F4 6F4 aF4 Ory _ 881‘;
ar ) ] F3} ] I
o5 0w ors oms o | | ok —oF
L Or1 st st ori! orl | oI oI

The signs of the elements of the Jacobian are generally easily found:

- 4+ 0 - 0
-0 + 0 -
+ -0 — 0
+ 0 — 0 —
7 — — 0 0

The one unknown, %—f, can be signed as negative given the assumption of Ci1(r) > [C1(r)]? (this is a

sufficient, not necessary, condition). From this, the Jacobian determinant is negative. We can now find the

10



sign of 6’"1 through Cramer’s rule:

AF'  9F'  9F! 9F' 9F!
oI 851 dsL arf ork
oF2  9F®  9F  9F2  OF>
oI Ostt 83% orll 87’%3
AF3  9F®  OF AF3  OF
oI 851 851 arf 87’2]‘
F* 9F* 9F* 9F* 9F?
oI ostt ask orll  ork
__9F®  9F°® oF5  9FS  9F°
ory oI  9sE 9L orE ork

oI  |oFEL ar' aF' a9F' 9F'|
ory 851 65{; Brf 87"5‘2
OF* 9F? QF? QF? 9F

ory 851 osk 87’51 ork
oF  oF®  9F® oF® oF®
or1  ost ask orfl ork

dF*  9F* 9F* 9F*  9F*
ory 851 651', 87’51 ork
AF°  9F° 9F° 9F°  9F®
or1  osH ast orfl  ork

The determinant in the numerator has the following signs:

— 4+ 0 — 0
-0 + 0 -
? — 0 — 0.
70 — 0 -
- - — 0 0

Through manipulation and substitution of the actual partial derivatives of the equations, it can be shown
that the determinant is negative irrespective of the unknown signs. Thus, we find that 3’"1 > 0. Through
similar applications of Cramer’s rule, it can be shown that all of the comparative statlcs in this system

H L
(aas} ,88%, etc.) are positive. A similar exercise can be conducted for when there are no war chests (in which
case the number of equations reduces to three).(]

A.7 Relationship between incumbent strength and war chests

In this model, the war chest is r; — 51 Thus, we wish to find the sign of 8(%—;5{) or % — % A sufficient,
but not necessary, condition for this is that BF and aF both be negative. We find that

OF° WH(sH 1) 1—C(rd) +naWH (ry — si + i 1)
oI 12371 +(1 =) WE(ry — s + 22 1)
H( H oWyl (ry — st + i, 1)
e £ W =i 4 rE 1)
_W2 {Cl 7“2

Since the first two two terms are positive, and the third negative, we need to show that

1-CrEY +n,WH(r — s 478 T
W2 Sla {01 7”2 }> W12( ) ){ (—F%I)—?;LZ)WLE?;—S%—FT‘E{,J

ny Wil (r1 — s’ +ri 1)
GO it D
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or
Wit(si'. D) [ 1= C(rs) +mWH (ry —sf + 13 1)
+(1 = no)WE(ry — s + k1)

W3l (r1 — sit + 13!, I)

) (1= no)Wy (r1 = s{' + 7, 1)
Wy (s, 1)

From the assumption Wa(s1,1) >> Wia(s1, ), the first term on the right-hand side is close to zero. From
the arguments above, s > r; — s 4 rf which implies that the fraction of the second line is less than one.

+WH(H T

Since Cy(rf) > W (sH,I), the inequality holds. A similar argument can be made for BF 0O

B Proof of Proposition 2

In this section, I give a more detailed proof of Proposition 2: the two-election equilibrium with no uncertainty.
As a reminder, the incumbent spends all he has in the last election.

Step 1: §*. The challenger runs if ¢ < 1 —WH (r; — s 413, I) and does not run if ¢ > 1 —WH (1) —
sl 4713, 1).5

Step 2: ¢*. Having raised r; and knowing the first election challenger j (= L or H), the incumbent
must choose s] and 7. The incumbent can either save and raise enough to deter the challenger in the second
election or not. If the incumbent does not try to deter, he maximizes the following:

max W (s], T) {1 — O+ WH(r, — ) —l—r&])} .

J d
87,75

If he tries to deter, he maximizes the following:

max W/(s], 1) [1 = C(r) + WE(ry = 5] + 73, 1)

J 0d
51,7‘2

such that 1 — WH(ry — s + 13, 1) < M

The incumbent chooses the strategy which yields the greater utility. Because of the assumption on W/ (s, I)
and the comparative statics above, weaker incumbents must save and raise more to meet the deterrence
constraint. Depending on r1, there will be up to three regions. In the lower region, incumbents find it too
costly to deter, and maximize the first argument. In the middle region, incumbents deter the challenger,
and the constraint is binding (so that 1 — W (r; — s] + 13, ) = cfI), which means that the incumbent saves
and raises extra money to deter the challenger. In the upper region, incumbents deter the challenger, but
the constraint is not binding, so no extra money is raised.

Step 3: a*. The challenger runs if ¢ < 1 — WH(s# T) and does not run if ¢# > 1 — WH(sH T).

Step 4: p*. The incumbent must choose r;. The incumbent can either raise enough to deter the
challenger in the first election or not. If the incumbent does not try to deter in either election, he maximizes
the following:

max — C(ry) + WH( I {1-C( 1))+ W (T1*S{{(T1)+T§{(T1)J)}

where s¥(r;) denotes that the sf chosen by the incumbent depends on 7; (and similarly for r&'). If the
incumbent does not try to deter in the first election, but will try to deter in the second eleciton, he maximizes

the following:
max — C(ry) + WH( NA{1—=C(rg (r1)) + Wh(ry = st (r1) + 75" (r1), 1)}

5If the challenger entered when indifferent, then there would be an open-set problem for the incumbent.
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such that 1 —WH(rl fle +T2L,I) <cf .

If the incumbent does try to deter, he maximizes the following:%

max C’(r1)+W 51 r1), {1— 7‘2 el )—I—W (rl—le(rl)+7‘2L(7‘1),I)}

such that 1 — WH (s T) < cH
and 1—WH(ry —sb+rk 1)<

The incumbent chooses whether to deter by which approach gives him the most utility. There are up to four
regions. In the lowest region, incumbents find it too costly to deter, and maximize the first argument. In the
lower-middle region, incumbents do not deter in the first election, but do deter in the second election, and
that constraint is binding (1 — W (r; — st +rl I) = ¢f). In the upper-middle region, incumbents deter the
challenger, and the constraint is binding (so that 1-— WH(sl D) =cland 1 —WH(ry — sk 0l 1) =cH)7
In the highest region, incumbents deter the challenger, but the constraint is not binding, so no extra money
is raised.l]
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61t is straightforward, but tedious, to show that if the incumbent chooses to deter the incumbent in the first election, he will
also try to deter in the second election.

" Actually, for the strongest incumbents in this middle region, the first constraint is not binding, but the second constraint
is.
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