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In this appendix, I sign the comparative statics–such as whether fundraising increases in incumbent
strength–for the incumbent holding challenger quality constant, i.e. when challenger entry is not strategic.
I then give a detailed proof for the perfect-information, no-uncertainty equilibrium presented in the main
text.

A Proof of Comparative Statics
In this section, I present the solution to the incumbent’s maximization problem holding (probability of)
challenger quality constant. The method is to work backwards through each decision point of the incumbent
solving each maximization problem with the Kuhn-Tucker method. I then show how war chests and other
variables change with incumbent strength through the implicit funciton theorem.
BecauseW1(s, I) > 0,1 the incumbent will spend all that he has in the last election: s2 = r1−s1+r2 (recall

that subscripts denote the first or second election). Since the probabilities of drawing a high quality challenger
are held constant here (that is, they are known by the incumbent), the incumbent’s utility maximization
problem is a nested maximization problem:

max
r1≥0
−C(r1)

+η1

½
max

0≤sH1 ≤r1
WH(sH1 , I)

¿
1 + max

rH2 ≥0

· −C(rH2 ) + η2W
H(r1 − sH1 + rH2 , I)

+(1− η2)W
L(r1 − sH1 + rH2 , I)

¸À¾
+(1− η1)

½
max

0≤sL1≤r1
WL(sL1 , I)

¿
1 + max

rL2 ≥0

· −C(rL2 ) + η2W
H(r1 − sL1 + rL2 , I)

+(1− η2)W
L(r1 − sL1 + rL2 , I)

¸À¾
I solve the inner maximization problems and work outwards (to the overall maximization problem).

A.1 Solving for money raised in the second election

First solve:
max
rj2≥0

h
−C(rj2) + η2W

H(r1 − sj1 + rj2, I) + (1− η2)W
L(r1 − sj1 + rj2, I)

i
(The method is the same whether a low or high quality challenger ran in the first election, i.e., j = L or
H.) For this problem, r1 − sj1 (the war chest) is a constant. Using the method of Kuhn-Tucker to solve this
problem, I first set up the Lagrangian:

L(rj2, λ) = −C(rj2) + η2W
H(r1 − sj1 + rj2, I) + (1− η2)W

L(r1 − sj1 + rj2, I) + λrj2.

1Following convention, a subscript n on a function denotes the partial derivative of that function with respect to the nth

argument of the function. Thus, W1(s, q) =
∂W (s, q)

∂s
.
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The first-order conditions are

∂L

∂rj2
= −C1(rj2) + η2W

H
1 (r1 − sj1 + rj2, I) + (1− η2)W

L
1 (r1 − sj1 + rj2, I) + λ = 0

λ ≥ 0, rj2 ≥ 0, λrj2 = 0.

There are two cases: 1-{λ > 0, rj2 = 0}and 2-{λ = 0, r
j
2 > 0}. I examine the cases separately.

A.1.1 Case 1:

Here rj2 = 0. Therefore,

η2W
H
1 (r1 − sj1, I) + (1− η2)W

L
1 (r1 − sj1, I) < C1(0).

Since C1(0) = 0 and W j
1 (·, ·) > 0 by assumption, this cannot be true.

A.1.2 Case 2:

Here λ = 0. For a given war chest (r1 − sj1), find the r
j
2 > 0 that solves

η2W
H
1 (r1 − sj1 + rj2, I) + (1− η2)W

L
1 (r1 − sj1 + rj2, I) = C1(r

j
2). (1)

For future use I derive some comparative statics. Substituting the rj∗2 that solves Equation (1), I obtain

η2W
H
1 (r1 − sj1 + rj∗2 , I) + (1− η2)W

L
1 (r1 − sj1 + rj∗2 , I) ≡ C1(r

j∗
2 ). (2)

Partially differentiating both sides with respect to sj1, I obtainn
η2W

H
11(r1 − sj1 + rj∗2 , I) + (1− η2)W

L
11(r1 − sj1 + rj∗2 , I)

o(
−1 + ∂rj∗2

∂sj1

)
= C11(r

j∗
2 )

∂rj∗2
∂sj1

.

Since W j
11(·, ·) < 0 and C11(·) > 0, I find that 0 <

∂rj∗2
∂sj1

< 1. Looking further ahead, I substitute the rj∗2

that solves Equation (1) with the equilibrium sj∗1 :

η2W
H
1 (r1 − sj∗1 + rj∗2 , I) + (1− η2)W

L
1 (r1 − sj∗1 + rj∗2 , I) ≡ C1(r

j∗
2 ). (3)

Differentiating both sides with respect to r1, I obtain½
η2W

H
11(r1 − sj∗1 + rj∗2 , I)+

(1− η2)W
L
11(r1 − sj∗1 + rj∗2 , I)

¾(
1− dsj∗1

dr1
+

drj∗2
dr1

)
= C11(r

j∗
2 )

drj∗2
dr1

.

Since W11(·, ·) < 0 and C11(·) > 0, I find

drj∗2
dr1

> 0 ⇔ dsj∗1
dr1

> 1 +
drj∗2
dr1

> 1

drj∗2
dr1

= 0 ⇔ dsj∗1
dr1

= 1

drj∗2
dr1

< 0 ⇔ dsj∗1
dr1

< 1 +
drj∗2
dr1

< 1.

(4)
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A.2 Solving for the money spent in the first election

Now, solve the next maximization problem–finding sj1:

max
0≤sj1≤r1

W j(sj1, I)
h
1− C(rj∗2 ) + η2W

H(r1 − sj1 + rj∗2 , I) + (1− η2)W
L(r1 − sj1 + rj∗2 , I)

i
.

(The maximization problem is similar for sL1 and sH1 ). In this problem, r1 is treated as a constant. Solve
again through the method of Kuhn-Tucker by first setting up the Lagrangian:

L(sj1, µ1, µ2) = WH(sj1, I)

½
1− C(rj∗2 ) + η2W

H(r1 − sj1 + rj∗2 , I)

+(1− η2)W
L(r1 − sj1 + rj∗2 , I)

¾
+µ1s

j
1 + µ2(r1 − sj1).

The first-order conditions are

∂L

∂sj1
= W j

1 (s
j
1, I)

½
1− C(rj∗2 ) + η2W

H(r1 − sj1 + rj∗2 , I)

+(1− η2)W
L(r1 − sj1 + rj∗2 , I)

¾

+W j(sj1, I)


−C1(rj∗2 )

∂rj∗2
∂sj1

+

·
η2W

H
1 (r1 − sj1 + rj∗2 , I)

+(1− η2)W
L
1 (r1 − sj1 + rj∗2 , I)

¸"
−1 + ∂rj∗2

∂sj1

#


+µ1 − µ2

= 0

µ1s
j
1 = 0, µ1 ≥ 0, sj1 ≥ 0

µ2(r1 − sj1) = 0, µ2 ≥ 0, r1 ≥ sj1.

Using Equation (2), substitute and simplify, and obtain

W j
1 (s

j
1, I)

½
1− C(rj∗2 ) + η2W

H(r1 − sj1 + rj∗2 , I)

+(1− η2)W
L(r1 − sj1 + rj∗2 , I)

¾
+W j(sj1, I)

n
−C1(rj∗2 )

o
+µ1 − µ2 = 0.

There are four cases: 1-{µ1 > 0, µ2 > 0}, 2-{µ1 > 0, µ2 = 0}, 3-{µ1 = 0, µ2 > 0}, 4-{µ1 = 0, µ2 = 0}. I
examine each of these in turn.

A.2.1 Case 1:

Since µ1 > 0 and µ2 > 0, r1 = sj1 = 0. This can only be true if r1 = 0, in which case, this is the only possible
solution. If r1 > 0, this is not possible.

A.2.2 Case 2:

Here µ1 > 0 and µ2 = 0. Thus, s
j
1 = 0. For this to be true,

W j
1 (0, I)

½
1− C(rj∗2 ) + η2W

H(r1 + rj∗2 , I)

+(1− η2)W
L(r1 + rj∗2 , I)

¾
+ µ1 =W j(0, I)

n
C1(r

j∗
2 )
o
.
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Since µ1 > 0,

W j
1 (0, I)

½
1− C(rj∗2 ) + η2W

H(r1 + rj∗2 , I)

+(1− η2)W
L(r1 + rj∗2 , I)

¾
< W j(0, I)

n
C1(r

j∗
2 )
o
.

Rearranging,

W j
1 (0, I)

C1(r
j∗
2 )

<
W j(0, I)n

1− C(rj∗2 ) + η2W
H(r1 + rj∗2 , I) + (1− η2)W

L(r1 + rj∗2 , I)
o . (5)

To see that this is not possible, first define r̄ as the r that solves C1(r) = pWH
1 (r, I)+(1−p)WL

1 (r, I).
2 This

would be the r2 chosen by the incumbent if no war chest were brought from the first election (r1 = s1). This
r̄ exists by the assumptions that W j

1 (0, I) > C1(0) and there exists some r̃ such that W j(r̃, I) > C(r̃)–r̄

will be one of those r̃. From the first maximization problem solved (Equation (2)), η2W
H
1 (r1+ rj∗2 , I)+ (1−

η2)W
L
1 (r1 + rj∗2 , I) = C1(r̆

j∗
2 ), where r̆

j∗
2 is the specific rj∗2 that solves this equation. From the restrictions

on the first and second derivatives of W j(·, ·) and C(·), I find that r̆j∗2 < r̄ < r1 + r̆j∗2 (remembering that r1
must be positive, else this case is not possible). Since there exists some r̃ such that W j(r̃, I) > C(r̃), there
also exists an r̄ such that pWH(r̄, I) + (1− p)WL(r̄, I) > C(r̄). This implies that η2W

H(r1 + rj∗2 , I) + (1−
η2)W

L(r1 + rj∗2 , I) > C(rj∗2 ). Hence the denominator on the RHS of Equation (5) is greater than 1, while
the numerator on the RHS is less than 1. Thus the fraction on the RHS is less than 1. From the Inada-type
conditions on W j

1 (·, ·), note that the LHS is greater than 1. Thus, the inequality cannot hold, and this case
is not possible.

A.2.3 Case 3:

In this case, µ1 = 0 and µ2 > 0, which implies that s
j
1 = r1 > 0. This yields the first order condition:

W j
1 (r1, I)

½
1− C(rj∗2 ) + η2W

H(rj∗2 , I)

+(1− η2)W
L(rj∗2 , I)

¾
=W j(r1, I)

n
C1(r

j∗
2 )
o
+ µ2.

Assuming that the solution is not at a corner, this can be made into an identity:

W j
1 (r1, I)

½
1− C(rj∗2 ) + η2W

H(rj∗2 , I)

+(1− η2)W
L(rj∗2 , I)

¾
≡W j(r1, I)

n
C1(r

j∗
2 )
o
+ µ∗2.

Since sj1 = r1,
dsj∗1
dr1

= 1, which implies (from Equation (4))
drj∗2
dr1

= 0. Differentiating both sides with respect

to r1,

W j
11(r1, I)

½
1− C(rj∗2 ) + η2W

H(rj∗2 , I)

+(1− η2)W
L(rj∗2 , I)

¾
=W j

1 (r1, I)
n
C1(r

j∗
2 )
o
+

dµ∗2
dr1

. (6)

From the assumptions on W j(·, ·) and C(·), I find that dµ
∗
2

dr1
< 0. This means that if there is no war chest,

if one decreases r1, there will still be no war chest. Conversely, if one increases r1, there may be a war chest
(as one hits the corner where µ∗2 = 0, one moves into Case 4).

2Thus, rL < r̄ < rH .
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A.2.4 Case 4:

Here, µ1 = 0 and µ2 = 0. This implies that r1 > sj1 > 0. This yields the first-order condition:

W j
1 (s

j
1, I)

½
1− C(rj∗2 ) + η2W

H(r1 − sj1 + rj∗2 , I)

+(1− η2)W
L(r1 − sj1 + rj∗2 , I)

¾
=W j(sj1, I)

n
C1(r

j∗
2 )
o
. (7)

Since the term in braces on the LHS is greater than 1, and W j(sj1, I) < 1, C1(r
j∗
2 ) > W j

1 (s
j
1, I). Substituting

in the solution value of sj1,

W j
1 (s

j∗
1 , I)

½
1− C(rj∗2 ) + η2W

H(r1 − sj∗1 + rj∗2 , I)

+(1− η2)W
L(r1 − sj∗1 + rj∗2 , I)

¾
≡W j(sj∗1 , I)

n
C1(r

j∗
2 )
o
. (8)

Differentiating both sides with respect to r1, and substituting in Equation (3) to simplify,

W j
11(s

j∗
1 , I)

½
1− C(rj∗2 ) + η2W

H(r1 − sj∗1 + rj∗2 , I)

+(1− η2)W
L(r1 − sj∗1 + rj∗2 , I)

¾
dsj∗1
dr1

=W j
1 (s

j∗
1 , I)C1(r

j∗
2 )

"
2
dsj∗1
dr1
− 1
#
+W j(sj∗1 , I)C11(r

j∗
2 )

drj∗2
dr1

.

(9)

From Equation (4), if
drj∗2
dr1

> 0, then
dsj∗1
dr1

> 1. This yields a contradiction. Thus,
drj∗2
dr1

< 0, which means

that
dsj∗1
dr1

< 1. If
dsj∗1
dr1

< 0, this yields another contradiction. Thus, 0 <
dsj∗1
dr1

< 1.

A.3 Solving for money raised in the first election

Now solve the grand maximization problem:

max
r1≥0

−C(r1) +η1

½
WH(sH∗1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸¾
+(1− η1)

½
WL(sL∗1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸¾
where 0 < sL∗1 ≤ r1 and 0 < sH∗1 ≤ r1. Using the method of Kuhn-Tucker, set up the Lagrangian:

L(r1, ν) = −C(r1)
+η1

½
WH(sH∗1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸¾
+(1− η1)

½
WL(sL∗1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸¾
+νr1.
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The first-order conditions are (again, substituting with Equation (3))

dL

dr1
= −C1(r1)

+η1


WH
1 (s

H∗
1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸
dsH∗1
dr1

+WH(sH∗1 , I)C1(r
H∗
2 )

·
1− dsH∗1

dr1

¸


+(1− η1)


WL
1 (s

L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸
dsL∗1
dr1

+WL(sH∗1 , I)C1(r
L∗
2 )

·
1− dsL∗1

dr1

¸


+ν

= 0
νr1 = 0, ν ≥ 0, r1 ≥ 0.

There are two cases: 1-{ν > 0}and 2-{ν = 0}.

A.3.1 Case 1:

Since ν > 0, then r1 = 0, and thus sH∗1 = sL∗1 = 0 (and rH∗2 = rL∗2 ). For this to be a maximum

−C(0) + ©η1WH(0, I) + (1− η1)W
L(0, I)

ª· 1− C(r∗2) + η2W
H(r∗2 , I)

+(1− η2)W
L(r∗2 , I)

¸
≥

−C(r1) +
©
η1W

H(r1, I) + (1− η1)W
L(r1, I)

ª· 1− C(r∗2) + η2W
H(r∗2 , I)

+(1− η2)W
L(r∗2 , I)

¸
for all r1 = sH∗1 = sL∗1 .3 Since the term in brackets is greater than 1, if r1 = ε, the inequality will not hold
as a result of the Inada-type conditions on W j(·, ·) and C(·). This also rules out the possibility of Case 1 in
the second maximization problem (in Section A.2).

A.3.2 Case 2:

This is the only possibility that allows r1 > 0. Thus, r∗1 > 0.

A.4 Solution Maximum

I show that this problem satisfies the conditions of the Theorem of Kuhn and Tucker under Convexity
(Sundaram 1996, Theorem 7.16), and thus, that r∗1 is the maximum. Let

g(r1) = −C(r1) +η1

½
WH(sH∗1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸¾
+(1− η1)

½
WL(sL∗1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸¾
3 It must also be greater for all r1 > sH∗1 , etc., but the inequality stated will be sufficient to demonstrate the contradiction.
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so that the incumbent maximizes g(r1). If [g0(r̂1)− g0(r1)](r̂1 − r1) ≤ 0 for all r̂1, r1 ≥ 0, then g is concave.
Using the first derivative from the Lagrangian on r1,

g0(r1) = −C1(r1)

+η1


WH
1 (s

H∗
1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸
dsH∗1
dr1

+WH(sH∗1 , I)C1(r
H∗
2 )

·
1− dsH∗1

dr1

¸


+(1− η1)


WL
1 (s

L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸
dsL∗1
dr1

+WL(sH∗1 , I)C1(r
L∗
2 )

·
1− dsL∗1

dr1

¸


If the first challenger is high quality, r1 = sH∗1 , and thus
dsH∗1
dr1

= 1. If the first challenger is low quality,

r1 ≥ sL∗1 . If r1 > sL∗1 ,Equation (8) holds. If r1 = sL∗1 , then the equation is simplified. Substituting these in,
we obtain

g0(r1) = −C1(r1)
+η1W

H
1 (s

H∗
1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸

+(1− η1)


WL
1 (s

L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸
dsL∗1
dr1

+WL(sH∗1 , I)C1(r
L∗
2 )

·
1− dsL∗1

dr1

¸
 .

We finally obtain

g0(r1) = −C1(r1) +η1W
H
1 (s

H∗
1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸
+(1− η1)W

L
1 (s

L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸ (10)

Let

g0(r̂1) = −C1(r̂1) +η1W
H
1 (ŝ

H∗
1 , I)

·
1− C(r̂H∗2 ) + η2W

H(r̂1 − ŝH∗1 + r̂H∗2 , I)
+(1− η2)W

L(r̂1 − ŝH∗1 + r̂H∗2 , I)

¸
+(1− η1)W

L
1 (ŝ

L∗
1 , I)

·
1− C(r̂L∗2 ) + η2W

H(r̂1 − ŝL∗1 + r̂L∗2 , I)
+(1− η2)W

L(r̂1 − ŝL∗1 + r̂L∗2 , I)

¸
Without loss of generality, let r̂1 > r1. (A) Since C11(r) > 0, −C1(r̂1) < −C1(r1). (B) Since W11(s, I) < 0

and
dsj∗1
dr1

> 0, W1(ŝ
j∗
1 , I) < W1(s

j∗
1 , I). (C) Since C1(r) > 0 and

drj∗2
dr1

≤ 0, C(r̂j∗2 ) ≤ C(rj∗2 ). (D) Since

W1(s, I) > 0 and
d

dr1
(r1 − sq1∗1 + rq1∗2 ) ≥ 0 (see Equation 4), W (r̂1 − ŝj∗1 + r̂j∗2 , I) ≥ W (r1 − sj∗1 + rj∗2 , I).
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(E) From (B), (C), and (D),
η1W

H
1 (ŝ

H∗
1 , I)

·
1− C(r̂H∗2 ) + η2W

H(r̂1 − ŝH∗1 + r̂H∗2 , I)
+(1− η2)W

L(r̂1 − ŝH∗1 + r̂H∗2 , I)

¸
+(1− η1)W

L
1 (ŝ

L∗
1 , I)

·
1− C(r̂L∗2 ) + η2W

H(r̂1 − ŝL∗1 + r̂L∗2 , I)
+(1− η2)W

L(r̂1 − ŝL∗1 + r̂L∗2 , I)

¸


≤


η1W

H
1 (s

H∗
1 , I)

·
1− C(rH∗2 ) + η2W

H(r1 − sH∗1 + rH∗2 , I)
+(1− η2)W

L(r1 − sH∗1 + rH∗2 , I)

¸
+(1− η1)W

L
1 (s

L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(r1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(r1 − sL∗1 + rL∗2 , I)

¸
 .

From (A) and (E), we obtain g0(r̂1) − g0(r1) < 0. Since r̂1 > r1, we have [g0(r̂1) − g0(r1)](r̂1 − r1) ≤ 0
for all r̂1, r1 ≥ 0. The constraint h(r1) = r1 ≥ 0 is concave, and has a point h(r1) > 0 (specifically, any
r1 > 0), thus fulfilling Slater’s condition. Since the other Kuhn-Tucker first-order conditions hold, r∗1 is the
maximum.¤

A.5 The possibility of a war chest

Now I am left to show when a war chest may exist, i.e., when r∗1 > sL∗1 and/or r∗1 > sH∗1 . To show this,
first solve for r1 if the incumbent knew for certain that he would face a low quality challenger in the first
election. Call this rL1 . I now have the maximization problem:

max
rL1 ≥0

−C(rL1 ) +WL(sL∗1 , I)

·
1− C(rL∗2 ) + η2W

H(rL1 − sL∗1 + rH∗2 , I)
+(1− η2)W

L(rL1 − sL∗1 + rL∗2 , I)

¸
.

Through the Kuhn-Tucker method, obtain the Lagrangian:

L(rL1 , ν
L) = −C(rL1 ) +WL(sL∗1 , I)

·
1− C(rL∗2 ) + η2W

H(rL1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(rL1 − sL∗1 + rL∗2 , I)

¸
+ νLrL1 .

The first-order conditions are

dL

drL1
= −C1(rL1 )

+WL
1 (s

L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(rL1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(rL1 − sL∗1 + rL∗2 , I)

¸
dsL∗1
drL1

+WL(sL∗1 , I)C1(r
L∗
2 )

·
1− dsL∗1

drL1

¸
+νL

= 0
νLrL1 = 0, νL ≥ 0, rL1 ≥ 0.

(11)

As before, I can rule out rL1 = 0, which implies νL = 0. If (as in Case 3 of Section A.2 above) rL1 = sL∗1 ,

then
dsL∗1
drL1

= 1, and Equation (11) reduces to

C1(r
L
1 ) =WL

1 (s
L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(rL1 − sL∗1 + rL∗2 , I)
+(1− η2)W

L(rL1 − sL∗1 + rL∗2 , I)

¸
. (12)

8



This makes sense in that the marginal cost in this election must be equal to the marginal benefit of winning
this election plus the expected utility of the next election. And if (as in Case 4 of Section A.2 above)
rL1 > sL∗1 , then (from Equation (7)):

WL
1 (s

L∗
1 , I)

·
1− C(rL∗2 ) + η2W

H(rL1 − sL∗1 + rH∗2 , I)
+(1− η2)W

L(rL1 − sL∗1 + rL∗2 , I)

¸
=WL(sL∗1 , I)C1(r

L∗
2 ). (13)

Substituting Equation (13) into Equation (11), I obtain Equation (12) again. If rL1 > sL∗1 , substitute
Equation (12) into Equation (13) to get

C1(r
L
1 ) =WL(sL∗1 , I)C1(r

L∗
2 ). (14)

Since WL(sL∗1 , I) < 1, this requires that C1(rL∗2 ) > C1(r
L
1 ), and thus, r

L∗
2 > rL1 (if r

L
1 > sL∗1 ).

Going through the same process to find rH1 and its accompanying conditions, if rH1 > sH∗1 , then

C1(r
H
1 ) =WH(sH∗1 , I)C1(r

H∗
2 )

and rH∗2 > rH1 . Since by assumption, rL > rH (the monies raised and spent if there were only one election
and the incumbent knew the quality of his challenger was low or high, respectively), then the result (from
Equation (7)) that C1(rL∗2 ) > WL

1 (s
L∗
1 , I) yields sL∗1 > rL∗2 . But this means that sL∗1 > rL∗2 > rL1 , and since

sL∗1 ≤ rL1 , this yields a contradiction. Therefore, r
L
1 = sL∗1 : an incumbent would never have a war chest if

he knew that he was facing a high quality challenger in this election.
Now I show that rH1 < rL1 . There are two cases: 1-{rH1 = sH∗1 }and 2-{rH1 > sH∗1 } (knowing that

rL1 = sL∗1 ).

A.5.1 Case 1:

I wish to show that rH1 < rL1 when rH1 = sH∗1 . Suppose not. Then rH1 ≥ rL1 , which implies that C1(r
H
1 ) ≥

C1(r
L
1 ). Substituting in the reduced first-order conditions from Equation (12),

WH
1 (r

H
1 , I)

£
1− C(r∗2) + η2W

H(r∗2 , I) + (1− η2)W
L(r∗2, I)

¤ ≥
WL
1 (r

L
1 , I)

£
1− C(r∗2) + η2W

H(r∗2 , I) + (1− η2)W
L(r∗2 , I)

¤
where r∗2 = r̄ of Section A.2.2. Canceling out:

WH
1 (r

H
1 , I) ≥WL

1 (r
L
1 , I).

This yields a contradiction to the assumption that rL > rH .4 Thus, rH1 < rL1 (if there is no war chest).

A.5.2 Case 2:

I wish to show that rH1 < rL1 when rH1 > sH∗1 . Since rL1 = sL∗1 , the incumbent brings no war chest with
him into the second election cycle (if he draws a low quality challenger in the first election), and rL∗2 = r̄.
From Equation (12), C1(rL1 ) > WL

1 (r
L
1 , I). This implies that r

L
1 > rL > r̄. Since rH1 > sH∗1 , rH∗2 < r̄. From

Equation (14), rH∗2 > rH1 , and thus r
H
1 < r̄. Therefore rH1 < rL1 .

Since η ∈ (0, 1), by the concavity of the overall utility function, one obtains rH1 < r∗1 < rL1 . Now I
examine when to expect a war chest. If the incumbent knew he was running against a low quality challenger,
he would raise rL1 (and spend sL∗1 = rL1 ). From the point of view of the model, he is in Case 3, and thus,

µ2 > 0. Since
dµ∗2
dr1

< 0 (from Equation (6)), as one decreases r1 from rL1 to r
∗
1 , µ

∗
2 increases, and thus, there

4Or, more specifically, this yields a contradition to the shapes that WL(·) and WH(·) must take to maintain the assumption
that rL > rH .
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is no war chest if an incumbent found out he was running against a low quality challenger after he raised the
money. If the incumbent knew he was running against a high quality challenger, he would raise rH1 . He may

save some or none of it in this case. If he had no war chest in this case, since
dµ∗2
dr1

< 0, as one increases r1

from rH1 to r
∗
1 , µ

∗
2 decreases–perhaps reaching 0, in which case there would be a war chest. If the incumbent

had a war chest at rH1 , then since
dsH∗1
drH1

< 1 (from Equation (9)), as one increased r1 from rH1 to r∗1 , the

incumbent would keep a larger and larger war chest.¤

A.6 Relationship between incumbent strength and money

I utilize an application of the implicit function theorem for simultaneous equations (Chiang 1984, 210-212).
The equations used are the first order conditions derived above: Equations 2 (twice: once for each challenger
quality), 8 (twice: once for each challenger quality), and 10 (substituting in r1 = r∗1 to form the identity and
setting it equal to 0). Dropping the ∗ for simplicity:

F 1 : −C1(rH2 ) + η2W
H
1 (r1 − sH1 + rH2 , I) + (1− η2)W

L
1 (r1 − sH1 + rH2 , I) = 0

F 2 : −C1(rL2 ) + η2W
H
1 (r1 − sL1 + rL2 , I) + (1− η2)W

L
1 (r1 − sL1 + rL2 , I) = 0

F 3 : WH
1 (s

H
1 , I)

½
1− C(rH2 ) + η2W

H(r1 − sH1 + rH2 , I)
+(1− η2)W

L(r1 − sH1 + rH2 , I)

¾
−WH(sH1 , I)

©
C1(r

H
2 )
ª

= 0

F 4 : WL
1 (s

L
1 , I)

½
1− C(rL2 ) + η2W

H(r1 − sL1 + rL2 , I)
+(1− η2)W

L(r1 − sL1 + rL2 , I)

¾
−WL(sL1 , I)

©
C1(r

L
2 )
ª

= 0

F 5 :


−C1(r1) +η1W

H
1 (s

H
1 , I)

·
1− C(rH2 ) + η2W

H(r1 − sH1 + rH2 , I)
+(1− η2)W

L(r1 − sH1 + rH2 , I)

¸
+(1− η1)W

L
1 (s

L
1 , I)

·
1− C(rL2 ) + η2W

H(r1 − sL1 + rL2 , I)
+(1− η2)W

L(r1 − sL1 + rL2 , I)

¸
 = 0

Assuming continuous partial derivatives and a nonzero Jacobian determinant, through the implict function
theorem, we derive the following system:

∂F 1

∂r1
∂F 1

∂sH1

∂F 1

∂sL1

∂F 1

∂rH2

∂F 1

∂rL2
∂F 2

∂r1
∂F 2

∂sH1

∂F 2

∂sL1

∂F 2

∂rH2

∂F 2

∂rL2
∂F 3

∂r1
∂F 3

∂sH1

∂F 3

∂sL1

∂F 3

∂rH2

∂F 3

∂rL2
∂F 4

∂r1
∂F 4

∂sH1

∂F 4

∂sL1

∂F 4

∂rH2

∂F 4

∂rL2
∂F 5

∂r1
∂F 5

∂sH1

∂F 5

∂sL1

∂F 5

∂rH2

∂F 5

∂rL2





∂r1
∂I
∂sH1
∂I
∂sL1
∂I
∂rH2
∂I
∂rL2
∂I

 =

−∂F 1

∂I

−∂F 2

∂I

−∂F 3

∂I

−∂F 4

∂I

−∂F 5

∂I

 .

The signs of the elements of the Jacobian are generally easily found:
− + 0 − 0
− 0 + 0 −
+ − 0 − 0
+ 0 − 0 −
? − − 0 0

 .

The one unknown, ∂F 5

∂r1
, can be signed as negative given the assumption of C11(r) > [C1(r)]

2 (this is a
sufficient, not necessary, condition). From this, the Jacobian determinant is negative. We can now find the
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sign of ∂r1
∂I through Cramer’s rule:

∂r1
∂I

=

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

−∂F 1

∂I
∂F 1

∂sH1

∂F 1

∂sL1

∂F 1

∂rH2

∂F 1

∂rL2

−∂F 2

∂I
∂F 2

∂sH1

∂F 2

∂sL1

∂F 2

∂rH2

∂F 2

∂rL2

−∂F 3

∂I
∂F 3

∂sH1

∂F 3

∂sL1

∂F 3

∂rH2

∂F 3

∂rL2

−∂F 4

∂I
∂F 4

∂sH1

∂F 4

∂sL1

∂F 4

∂rH2

∂F 4

∂rL2

−∂F 5

∂I
∂F 5

∂sH1

∂F 5

∂sL1

∂F 5

∂rH2

∂F 5

∂rL2

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯¯̄̄̄

¯̄̄̄
¯̄̄̄
¯

∂F 1

∂r1
∂F 1

∂sH1

∂F 1

∂sL1

∂F 1

∂rH2

∂F 1

∂rL2
∂F 2

∂r1
∂F 2

∂sH1

∂F 2

∂sL1

∂F 2

∂rH2

∂F 2

∂rL2
∂F 3

∂r1
∂F 3

∂sH1

∂F 3

∂sL1

∂F 3

∂rH2

∂F 3

∂rL2
∂F 4

∂r1
∂F 4

∂sH1

∂F 4

∂sL1

∂F 4

∂rH2

∂F 4

∂rL2
∂F 5

∂r1
∂F 5

∂sH1

∂F 5

∂sL1

∂F 5

∂rH2

∂F 5

∂rL2

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

.

The determinant in the numerator has the following signs:¯̄̄̄
¯̄̄̄
¯̄
− + 0 − 0
− 0 + 0 −
? − 0 − 0
? 0 − 0 −
− − − 0 0

¯̄̄̄
¯̄̄̄
¯̄ .

Through manipulation and substitution of the actual partial derivatives of the equations, it can be shown
that the determinant is negative irrespective of the unknown signs. Thus, we find that ∂r1

∂I > 0. Through
similar applications of Cramer’s rule, it can be shown that all of the comparative statics in this system

(∂s
H
1

∂I ,
∂rL2
∂I , etc.) are positive. A similar exercise can be conducted for when there are no war chests (in which

case the number of equations reduces to three).¤

A.7 Relationship between incumbent strength and war chests

In this model, the war chest is r1 − sj1. Thus, we wish to find the sign of
∂(r1−sj1)

∂I or ∂r1
∂I −

∂sj1
∂I . A sufficient,

but not necessary, condition for this is that ∂F 3

∂I and ∂F 4

∂I both be negative. We find that

∂F 3

∂I
= WH

12(s
H
1 , I)

½
1− C(rH2 ) + η2W

H(r1 − sH1 + rH2 , I)
+(1− η2)W

L(r1 − sH1 + rH2 , I)

¾
+WH

1 (s
H
1 , I)

½
η2W

H
2 (r1 − sH1 + rH2 , I)

+(1− η2)W
L
2 (r1 − sH1 + rH2 , I)

¾
−WH

2 (s
H
1 , I)

©
C1(r

H
2 )
ª
.

Since the first two two terms are positive, and the third negative, we need to show that

WH
2 (s

H
1 , I)

©
C1(r

H
2 )
ª
> WH

12(s
H
1 , I)

½
1− C(rH2 ) + η2W

H(r1 − sH1 + rH2 , I)
+(1− η2)W

L(r1 − sH1 + rH2 , I)

¾
+WH

1 (s
H
1 , I)

½
η2W

H
2 (r1 − sH1 + rH2 , I)

+(1− η2)W
L
2 (r1 − sH1 + rH2 , I)

¾
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or

C1(r
H
2 ) >

WH
12(s

H
1 , I)

WH
2 (s

H
1 , I)

½
1− C(rH2 ) + η2W

H(r1 − sH1 + rH2 , I)
+(1− η2)W

L(r1 − sH1 + rH2 , I)

¾

+WH
1 (s

H
1 , I)

½
η2W

H
2 (r1 − sH1 + rH2 , I)

+(1− η2)W
L
2 (r1 − sH1 + rH2 , I)

¾
WH
2 (s

H
1 , I)

From the assumption W2(s1, I) >> W12(s1, I), the first term on the right-hand side is close to zero. From
the arguments above, sH1 > r1− sH1 + rH2 , which implies that the fraction of the second line is less than one.
Since C1(rH2 ) > WH

1 (s
H
1 , I), the inequality holds. A similar argument can be made for

∂F 4

∂I .¤

B Proof of Proposition 2
In this section, I give a more detailed proof of Proposition 2: the two-election equilibrium with no uncertainty.
As a reminder, the incumbent spends all he has in the last election.
Step 1: β∗. The challenger runs if cH < 1−WH(r1− sj1+ rj2, I) and does not run if c

H ≥ 1−WH(r1−
sj1 + rj2, I).

5

Step 2: σ∗. Having raised r1 and knowing the first election challenger j (= L or H), the incumbent
must choose sj1 and r

j
2. The incumbent can either save and raise enough to deter the challenger in the second

election or not. If the incumbent does not try to deter, he maximizes the following:

max
sj1,r

j
2

W j(sj1, I)
h
1− C(rj2) +WH(r1 − sj1 + rj2, I)

i
.

If he tries to deter, he maximizes the following:

max
sj1,r

j
2

W j(sj1, I)
h
1− C(rj2) +WL(r1 − sj1 + rj2, I)

i
such that 1−WH(r1 − sj1 + rj2, I) ≤ cH .

The incumbent chooses the strategy which yields the greater utility. Because of the assumption on W j(s, I)
and the comparative statics above, weaker incumbents must save and raise more to meet the deterrence
constraint. Depending on r1, there will be up to three regions. In the lower region, incumbents find it too
costly to deter, and maximize the first argument. In the middle region, incumbents deter the challenger,
and the constraint is binding (so that 1−WH(r1− sj1+ rj2, I) = cH), which means that the incumbent saves
and raises extra money to deter the challenger. In the upper region, incumbents deter the challenger, but
the constraint is not binding, so no extra money is raised.
Step 3: α∗. The challenger runs if cH < 1−WH(sH1 , I) and does not run if c

H ≥ 1−WH(sH1 , I).
Step 4: ρ∗. The incumbent must choose r1. The incumbent can either raise enough to deter the

challenger in the first election or not. If the incumbent does not try to deter in either election, he maximizes
the following:

max
r1
−C(r1) +WH(sH1 (r1), I)

©
1− C(rH2 (r1)) +WH(r1 − sH1 (r1) + rH2 (r1), I)

ª
where sH1 (r1) denotes that the s

H
1 chosen by the incumbent depends on r1 (and similarly for rH2 ). If the

incumbent does not try to deter in the first election, but will try to deter in the second eleciton, he maximizes
the following:

max
r1
−C(r1) +WH(sH1 (r1), I)

©
1− C(rH2 (r1)) +WL(r1 − sH1 (r1) + rH2 (r1), I)

ª
5 If the challenger entered when indifferent, then there would be an open-set problem for the incumbent.
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such that 1−WH(r1 − sL1 + rL2 , I) ≤ cH .

If the incumbent does try to deter, he maximizes the following:6

max
r1
−C(r1) +WL(sL1 (r1), I)

©
1− C(rL2 (r1)) +WL(r1 − sL1 (r1) + rL2 (r1), I)

ª
such that 1−WH(sH1 , I) ≤ cH

and 1−WH(r1 − sL1 + rL2 , I) ≤ cH .

The incumbent chooses whether to deter by which approach gives him the most utility. There are up to four
regions. In the lowest region, incumbents find it too costly to deter, and maximize the first argument. In the
lower-middle region, incumbents do not deter in the first election, but do deter in the second election, and
that constraint is binding (1−WH(r1−sL1 +rL2 , I) = cH). In the upper-middle region, incumbents deter the
challenger, and the constraint is binding (so that 1−WH(sH1 , I) = cH and 1−WH(r1− sL1 + rL2 , I) = cH).7

In the highest region, incumbents deter the challenger, but the constraint is not binding, so no extra money
is raised.¤
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